Experimental surface strain mapping of porcine peripapillary sclera due to elevations of intraocular pressure.
نویسندگان
چکیده
To experimentally characterize 2D surface mapping of the deformation pattern of porcine peripapillary sclera following acute elevations of intraocular pressure (IOP) from 5 mm Hg to 45 mm Hg. Four porcine eyes were obtained within 48 h postmortem and dissected to the sclera. After the anterior chamber was removed, each posterior scleral shell was individually mounted at the equator on a custom-built pressurization device, which internally pressurized the scleral samples with isotonic saline at 22 degrees C. Black polystyrene microspheres (10 microm in diameter) were randomly scattered and attached to the scleral surface. IOP was incrementally increased from 5 mm Hg to 45 mm Hg (+/-0.15 mm Hg), and the surface deformation of the peripapillary sclera immediately adjacent to the dural insertion was optically tracked at a resolution of 2 micrompixel one quadrant at a time, for each of four quadrants (superior, nasal, inferior, and temporal). The 2D displacement data of the microsphere markers were extracted using the optical flow equation, smoothed by weighting function interpolation, and converted to the corresponding Lagrangian finite surface strain. In all four quadrants of each eye, the principal strain was highest and primarily circumferential immediately adjacent to the scleral canal. Average maximum Lagrangian strain across all quadrants for all eyes was 0.013+/-0.005 from 5 mm Hg to 10 mm Hg, 0.014+/-0.004 from 10 mm Hg to 30 mm Hg and 0.004+/-0.001 from 30 mm Hg to 45 mm Hg, demonstrating the nonlinearity in the IOP-strain relationship. For each scleral shell, the observed surface strain mapping implied that the scleral stiffness was relatively low between 5 mm Hg and 10 mm Hg, but dramatically increased for each IOP elevation increment beyond 10 mm Hg. Peripapillary deformation following an acute IOP elevation may be governed by the underlying scleral collagen microstructure and is likely in the high-stiffness region of the scleral stress-strain curve when IOP is above 10 mm Hg.
منابع مشابه
Correlation between biomechanical responses of posterior sclera and IOP elevations during micro intraocular volume change.
PURPOSE This study tested the hypothesis that intraocular pressure (IOP) elevations, induced by controlled increase of intraocular volume, are correlated with the biomechanical responses of the posterior sclera. METHODS Porcine globes were tested within 48 hours postmortem. The first group of globes (n = 11) was infused with 15 μL of phosphate-buffered saline at three different rates to inves...
متن کاملViscoelastic material properties of the peripapillary sclera in normal and early-glaucoma monkey eyes.
PURPOSE To test the hypothesis that changes in the viscoelastic material properties of peripapillary sclera are present within monkey eyes at the onset of early experimental glaucoma detected by confocal scanning laser tomography (CSLT). METHODS Short-term (3-9 weeks), moderate (< or =44 mm Hg) intraocular pressure (IOP) elevation was induced in one eye of each of eight male monkeys by laseri...
متن کاملBiomechanical effects of intraocular pressure elevation on optic nerve/lamina cribrosa before and after peripapillary scleral collagen cross-linking.
PURPOSE To evaluate the biomechanical effect of intraocular pressure (IOP) elevation on the optic nerve/lamina cribrosa complex (ON/LC) and peripapillary sclera (PS) of porcine eyes before and after localized collagen cross-linking. METHODS Eighteen porcine globes were divided evenly into three groups. The optic nerves were transected to expose the ON/LC, and each globe was infused through an...
متن کاملEffects of Peripapillary Scleral Stiffening on the Deformation of the Lamina Cribrosa
PURPOSE Scleral stiffening has been proposed as a treatment for glaucoma to protect the lamina cribrosa (LC) from excessive intraocular pressure-induced deformation. Here we experimentally evaluated the effects of moderate stiffening of the peripapillary sclera on the deformation of the LC. METHODS An annular sponge, saturated with 1.25% glutaraldehyde, was applied to the external surface of ...
متن کاملFinite element modeling of the viscoelastic responses of the eye during microvolumetric changes
A linear viscoelastic finite element model was built to investigate factors that influenced the intraocular pressure (IOP) elevations due to micro-volumetric changes in the eye at three different rates. The viscoelastic properties of the cornea and the sclera, including the instantaneous modulus, equilibrium modulus, and relaxation time constants, parametrically varied to examine their effects ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomechanical engineering
دوره 130 4 شماره
صفحات -
تاریخ انتشار 2008